
Safe Integer Operations 1
ID: 312-BSI | Version: 5 | Date: 11/14/08 4:49:35 PM

Safe Integer Operations
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005, 20008 Pearson Education, Inc.

2005-09-27; 2008-10-06 L1 / D/P, L2

Integer operations can result in error conditions and lost data, particularly when inputs to these operations
can be manipulated by a malicious user. A solution to this problem is to use a safe integer library for all
operations on integers where one or more of the inputs could be influenced by an untrusted source.

Development Context
Integer operations

Technology Context
C, C++, IA-32, Win32, UNIX

Attacks
Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk
Integers in C and C++ are susceptible to overflow, sign, and truncation errors that can lead to exploitable
vulnerabilities.

Description
Integer operations can result in error conditions and possible lost data, particularly when inputs to these
operations can be manipulated by a potentially malicious user.

The first line of defense against integer vulnerabilities should be range checking, either explicitly or through
strong typing. However, it is difficult to guarantee that multiple input variables cannot be manipulated to
cause an error to occur in some operation somewhere in a program.

An alternative or ancillary approach is to protect each operation. However, because of the large number of
integer operations that are susceptible to these problems and the number of checks required to prevent or
detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to implement.

A more economical solution to this problem is to use a safe integer library for all operations on integers
where one or more of the inputs could be influenced by an untrusted source. Figure 1 shows examples of
when to use safe integer operations.

Figure 1. Checking for overflow when adding two signed integers

Use Safe Integer Operations

void* CreateStructs(int StructSize, int HowMany) {
 SafeInt<unsigned long> s(StructSize);
 s *= HowMany;
 return malloc(s);
}

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html (Plakosh, Daniel)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Safe Integer Operations 2
ID: 312-BSI | Version: 5 | Date: 11/14/08 4:49:35 PM

Don't Use Safe Integer Operations

void foo() {
 int i;
 for (i = 0; i < INT_MAX; i++)

}

The first example shows a function that accepts two parameters specifying the size of a given structure and
the number of structures to allocate that can be manipulated by untrusted sources. These two values are then
multiplied to determine what size memory to allocate. Of course, the multiplication operation could easily
overflow the integer variable and provide an opportunity to exploit a buffer overflow.

The second example shows when not to use safe integer operations. The integer i is used in a tightly
controlled loop and is not subject to manipulation by an untrusted source, so using safe integers would add
unnecessary performance overhead.

Safe integer libraries use different implementation strategies. The gcc library uses postconditions to detect
integer errors. SafeInt C++ class tests preconditions to prevent integer errors. The Michael Howard library
takes advantage of machine-specific mechanisms to detect integer errors. We compare and contrast these
approaches in the remainder of this section.

GCC
The gcc runtime system generates traps for signed overflow on addition, subtraction, and multiplication
operations for programs compiled with the -ftrapv flag. To accomplish this, calls are made to existing,
portable library functions that test an operation’s postconditions and call the C library abort() function
when results indicate that an integer error has occurred.

Figure 2. Checking for overflow when adding two signed integers

1. Wtype __addvsi3 (Wtype a, Wtype b) {
2. const Wtype w = a + b;
3. if (b >= 0 ? w < a : w > a)
4. abort ();
5. return w;
6. }

Figure 2 shows a function from the gcc runtime system that is used to detect overflows resulting from the
addition of signed 16-bit integers. The addition operation is performed on line 2 and the results are compared
to the operands to determine whether an overflow condition has occurred. For _addvsi3(), if b is non-
negative and w < a, an overflow has occurred and abort() is called. Similarly, abort() is also called if
b is negative and w > a.

C Language Compatible Library
Michael Howard has written parts of a safe integer library that detects integer overflow conditions using
architecture-specific mechanisms [Howard 03b].

Figure 3. Unsigned integer addition and multiplication operations

 1. int UAdd(size_t a, size_t b, size_t *r) {
 2. __asm {
 3. mov eax, dword ptr [a]
 4. add eax, dword ptr [b]
 5. mov ecx, dword ptr [r]
 6. jc short j1
 7. mov al, 1 // 1 is success
 8. jmp short j2
 9. j1:
10. xor al, al // 0 is failure
11. j2:
12. };

Safe Integer Operations 3
ID: 312-BSI | Version: 5 | Date: 11/14/08 4:49:35 PM

13. }

Figure 3 shows a function that performs unsigned addition. Figure 5 shows a version of the vulnerable
program from Figure 4 that has been modified (shown in bold) to use the Howard library. The calculation of
the total length of the two strings is performed using the UAdd() call on lines 3–4 with appropriate checks
for error conditions. Even adding one to the sum can result in an overflow and needs to be protected.

The Howard approach can be used in both C and C++ programs, but has many drawbacks. The use of inline
assembly code interferes with compiler optimization, hurting performance in optimized code. The API is
awkward, affecting usability, and the use of embedded Intel assembly instructions prevents porting to other
architectures.

Figure 4. Truncation error involving the sum of two lengths

1. int main(int argc, char *const *argv) {
2. unsigned short int total;
3. total = strlen(argv[1])+strlen(argv[2])+1;
4. char *buff = (char *) malloc(total);
5. strcpy(buff, argv[1]);
6. strcat(buff, argv[2]);
7. }

Figure 5. C language compatible library solution

 1. int main(int argc, char *argv[]) {
 2. unsigned int total;
 3. if (UAdd(strlen(argv[1]), 1, &total) && UAdd(total, strlen(argv[2]), &total)) {
 4. char *buff = (char *)malloc(total);
 5. strcpy(buff, argv[1]);
 6. strcat(buff, argv[2]);
 7. }
 8. else {
 9. abort();
10. }
11. }

SafeInt Class
SafeInt is a C++ template class written by David LeBlanc [LeBlanc 04]. SafeInt tests the values of operands
before performing an operation to determine whether errors might occur. The class is declared as a template,
so it can be used with any integer type. Nearly every relevant operator has been overridden except for the
subscripting operator [].

Figure 6. Precondition approach for overflow checking

 1. if (!((rhs ^ lhs) < 0)) { //test for +/- combo
 2. //either two negatives or two positives
 3. if (rhs < 0) {
 4. //two negatives
 5. if (lhs < MinInt() - rhs) { //remember rhs < 0
 6. throw ERROR_ARITHMETIC_UNDERFLOW;
 7. }
 8. //ok
 9. }
10. else {
11. //two positives
12. if (MaxInt() - lhs < rhs) {
13. throw ERROR_ARITHMETIC_OVERFLOW;
14. }
15. //OK
16. }
17. }
18. //else overflow not possible
19. return lhs + rhs;

Safe Integer Operations 4
ID: 312-BSI | Version: 5 | Date: 11/14/08 4:49:35 PM

Figure 6 shows a section of code from the SafeInt class that checks for overflow in signed integer addition.
Figure 7 shows a version of the vulnerable program from Figure 4 that has been modified (boldface type)
to use the SafeInt library. Lines 1–4 show the implementation for the SafeInt + operator, which is invoked
twice on line 9 of the main routine. The variables s1 and s2 are declared as SafeInt types on lines 7 and 8. In
both cases, the SafeInt class is instantiated as an unsigned long type. When the + operator is invoked (twice)
on line 9, it uses the safe version of the operator implemented as part of the SafeInt class. The safe version of
the operator guarantees that an exception is generated if the result is invalid.

Figure 7. SafeInt solution

 1. //addition
 2. SafeInt<T> operator +(SafeInt<T> rhs) {
 3. return SafeInt<T>(addition(m_int,rhs.Value()));
 4. }
 5. int main(int argc, char *const *argv) {
 6. try {
 7. SafeInt<unsigned long> s1(strlen(argv[1]));
 8. SafeInt<unsigned long> s2(strlen(argv[2]));
 9. char *buff = (char *) malloc(s1 + s2 + 1);
10. strcpy(buff, argv[1]);
11. strcat(buff, argv[2]);
12. }
13. catch(SafeIntException err) {
14. abort();
15. }
16. }

The SafeInt library has several advantages over the Howard approach. Because it is written entirely in C++,
it is more portable than safe arithmetic operations that depend on assembly language instructions. It is also
more usable: arithmetic operators can be used in normal inline expressions, and SafeInt uses C++ exception
handling instead of C-style return code checking. SafeInt typically performs better than the Howard library
with optimized applications.

The precondition approach could also be implemented in C-compatible libraries, although the advantages
derived from C++ would not be realized.

IntegerLib
IntegerLib is a collection of utility functions to can software developers in writing C programs that are free
from integer error conditions.

IntegerLib uses the runtime-constraint handling mechanisms defined by ISO/ IEC TR 24731-1 and the
high-performance algorithms defined by Henry S. Warren in the book Hacker’s Delight [Warren 02]. The
IntegerLib was developed by the CERT/CC and is freely available at http://www.cert.org/secure-coding/.

IntegerLib can be used in either C or C++ programs but is intended for use with C. The interface can be
awkward to use, but without operating overloading, it is hard to imagine a better approach. The code is
both portable and efficient, although it should be possible to improve performance further for particular
implementations.

References

[Howard 03b] Howard, Michael. An Overlooked Construct and an
Integer Overflow Redux. http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dncode/html/
secure09112003.asp (2003).

[LeBlanc 04] LeBlanc, David. Integer Handling with the C
++ SafeInt Class. http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dncode/html/
secure01142004.asp (2004).

Safe Integer Operations 5
ID: 312-BSI | Version: 5 | Date: 11/14/08 4:49:35 PM

[Warren 02] Warren, Henry S. Hacker’s Delight. Boston, MA:
Addison-Wesley, 2002.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

